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Finite-size scaling and universality in the (2 + I)D Ising model 

Make Henkel 
Physikalisches Institut, Universitat Bonn, Nussallee 12, 5300 Bonn 1, West Germany 

Received 7 October 1986, in final form 12 February 1987 

Abstract. The energy and magnetisation density of the ( 2  + I ID k i n g  model are investigated. 
For the thermal exponent, we find x, = 1.42 * 0.02, in agreement with hyperscaling. 

The Privman-Fisher universality hypothesis is confirmed by two methods. First, we 
present, at the critical point, numerical data for the finite-size scaling amplitudes of the 
(singular) free energy, magnetisation, susceptibility and surface tension and check them 
for universality. Second, using the explicitly computed eigenvectors of the Hamiltonian, 
it is shown that the ratios of matrix elements of the energy and magnetisation density are 
universal. 

1. Introduction 

Universality provides the framework for a detailed description of the singular behaviour 
of statistical systems. This can be expressed most conveniently by the Privman-Fisher 
(1984) hypothesis which states that the singular part of the free energy density of a 
system of finite size L should be 

where t = T - T, is the reduced temperature, b is a magnetic field, v and A = p + y are 
critical exponents and Y is a universal function. All non-universal behaviour can be 
absorbed into the constants C, and C,. For two-dimensional systems, (1.1) can be 
obtained as a consequence of conformal invariance (see Reinicke (1987) for a dis- 
cussion). 

In this work we investigate the universality in a three-dimensional Ising model. 
We shall work with the Hamiltonian (Henkel 1984): 

F‘”= L - d Y ( C i t L i ’ Y ,  C,bLA’”) (1.1) 

1-77 H = - h C a ’ ( n ) -  C (? U ” (  n ( n  7 + - U?( n ) U V (  n.!)  ( 1.2) 
n ( n , n ’ l  2 

defined on a square N x k lattice with periodic boundary conditions. Nearest- 
neighbour interactions are understood and the uX, my, U’ are the Pauli matrices. 

We briefly recall some properties of H (Henkel 1984). At 77 = 1, H is the Hamil- 
tonian limit of the 3~ Ising model. For each 17 # 0, there is a critical point falling into 
the 3~ Ising universality class. Some values of the critical field h , ( ~ )  are given in 

Table 1.  Critical point h,( v )  and normalisation factor f( 7 1. The figures in brackets give 
the expected uncertainty in the last digit. 

1) 1 .o 0.9 0.7 0.5 0.3 

h,( 7 3.047 ( I  j 2 .938( l )  2.720(1) 2.500(2) 2.30(1) 
All) 1 .o 0.919 ( 5 )  0.752 ( 5 )  0.577 ( 5 )  0.437 ( 5 )  

0305-4470/87/ 123969 + 13$02.50 @ 1987 IOP Publishing Ltd 3969 
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table 1. H commutes with the operator 

and the corresponding eigenspaces are called sector 0 and sector 1 according to the 
eigenvalues of Q. The transverse field h plays the role of the temperature. 

Applying finite-size scaling (Fisher 1971, Barber 1983) to H, the critical exponents 
were obtained for both the triangular (Hamer and Johnson 1986) and the square lattice 
(Henkel 1984). The results are in excellent agreement with those obtained from the 
3~ (classical) Ising model (Pawley et al 1984, Barber et al 1985, Adler 1983, Marland 
1981, Le Guillou and Zinn-Justin 1980). 

We shall be interested in the universality of the finite-size scaling amplitudes. By 
universality we mean that the finite-size amplitudes, if H is normalised correctly (see 
below), are independent of 7. 

In a recent letter (Henkel 1986), the amplitudes of the energy gaps (or inverse 
correlation lengths) were studied. It was found that the amplitudes are indeed universal, 
provided H is renormalised by a factor l/f(r]) (see table 1). This renormalisation 
comes from an anisotropic 7-dependent rescaling of the 'time' and 'space' directions 
when performing the 7 continuum limit (see, e.g., Kogut 1979) which leads to the 
quantum Hamiltonian (1.2). The normalisation f( 1) = 1 is chosen for convenience. 

We shall extend the above-mentioned study (Henkel 1986) to the energy density 
operator E 

1 
E =-c d ( n )  

. i l r n  

and the magnetisation density operator a: 
1 

. i l r n  
a = - c  d ( n )  

(1.4) 

(1.5) 

( X =  N 2  is the number of sites) with the scaling dimensions (e.g. Kadanoff 1976) 

x, = ( 1 - a )/ v (1.6) 

xu = p /  v. (1.7) 
While xu was determined earlier to have the value xu=0.515~0.009 (Henkel 1984), 
there exists no finite-size estimate for x, in the literature. Conventional finite-size 
approaches have failed to produce a reliable estimate. We shall show how to overcome 
this problem and arrive at x, = 1.42k0.02 (see 9 2), in agreement with hyperscaling. 

We now turn to the universality question. Let 10) be the ground state, I E )  the first 
excited state in the sector 0 (whose mass gap is the inverse energy correlation length) 
and la) the lowest state in the Q = 1 sector. Then consider 

(1.9) 

(The meaning of the index r will be explained in 0 3.) 
Both C,,, and C,,, are found to be independent of 7. In contrast to the two- 

dimensional situation, they are not equal. We shall show, using formal perturbation 
theory around the critical point Hamiltonian, that this observation of universality 
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supports the Privman-Fisher hypothesis, not only at the critical point, but for a domain 
of values of the scaling variables. As a further confirmation of this argument, the 
Privman- Fisher hypothesis will also be checked directly by comparing the magnetisa- 
tion and susceptibility amplitudes at the critical point. In  addition, we shall also 
confirm the universality of the singular part of the free energy and also for the surface 
tension. Similar investigations were done for the (classical) 3~ Ising model by Mon 
(1985) and Mon and Jasnow (1985). 

The paper is organised in three large parts. The first part is 9 2. We determine x, 
and discuss hyperscaling violations, which have been discussed controversially during 
recent years. Section 3 is the second part; it contains the investigation of the universality 
of C,,, and C,,,,. We discuss the implications of this result to the Privman-Fisher 
hypothesis. The last part is made from § §  4-6. Here we present the numerical evidence 
which directly supports (1.1). In § 4, we do  so by comparing magnetisation and 
susceptibility amplitudes. In § 5 ,  we study the amplitude of the singular part of the 
free energy itself and in § 6 we examine the surface tension. In § 7, we present our 
conclusions. In the appendix, we descibe the numerical methods used for the diagonali- 
sation of H. 

2. Determination of the thermal exponent 

Before we study the universality of the finite-size scaling amplitudes, we hav? to 
determine the exponent x,, which is equivalent to a determination (by (1.6)) of a / v .  
The conventional approach (Hamer 1983a, Hamer and Johnson 1986) defines the 
'specific heat' as 

1 a*E,(h)  
c ( h ) = - - h -  

X ah2 

where Eo is the ground-state energy of H and X the number of sites. The application 
of finite-size scaling to c ( h )  yields poor results for a / v  (Hamer 1983a, Hamer and 
Johnson 1986) which deviate by about a factor of two from the results of other methods 
(see below). 

In figure 1, we show c ( h )  for 7 = 0.7 for N = 2,3,4.  It is clearly seen that the 
maxima of the finite-size specific heat fall quite far from the critical point h,. This 
means that the lattices considered are far too small to allow a reliable determination 
of a / v  from c ( h )  as defined in (2.1). 

We now propose two methods to overcome this problem. They both have in 
common that one has to compute some eigenvectors of the finite-size Hamiltonian. 
Let 10) denote the ground-state eigenvector and 1.) the eigenvector of the finite excited 
state in sector 0. We adopt the following methods. 

( i )  We compute the matrix element (Ole/&) of the energy density operator which 
should scale as (see (1.6)) 

( 0 j E l E ) -  N-".. (2.2) 
This gives a first recipe to obtain finite-size estimates of x,. 

(ii) Following the technique of Hamer (1983b), we consider the matrix 

(2.3) 
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2 h,  3 
h 

Figure 1. Specific heat for q =0.7 as computed from (2.1) for N =2, 3,4. 

Let e+ be the higher and e- the lower eigenvalue of E and define the latent heat L 
per site as 

L = ( e+  - e - )  - N-".  (2.4) 

and we obtain a second set of estimates for x,. 
For some values of 17, we give (01~1~) and L for lattices up to N = 5 in table 2. The 

estimates for x, derived from these data and (2.2) and (2.4) are given in table 3. By 
x,!, we denote the estimates obtained from ( O l a l ~ )  and by xE2 those obtainedt from L. 

Table 2. Finite-size data for ( 0 1 ~ 1 ~ )  and the latent heat L. 

q = 1.0 q = 0.7 q = 0.5 

N (01~1~)  L (OIElE) L ( O I E I E )  L 
~~~~~ ~~~~~~~ 

2 -0.327 35 1.0 -0.30207 1.0 -0.272 86 1.0 
3 -0.211 04 0.524 52 -0.196 29 0.50606 -0.181 04 0.489 30 
4 -0.145 48 0.340 54 -0.136 37 0.325 71 -0.12691 0.310 72 
5 -0.107 35 0.245 06 -0.101 16 0.233 92 -0.094 81 0.222 32 

Table 3. Finite-size estimates for the exponent x,. In the row labelled N + CO we give the 
van den Broeck-Schwartz approximants for the sequence x, defined in the text. 

9 = 1.0 q = 0.7 q = O S  

3 1.0826 1.5914 1.063 1 1.6798 1.0118 1.7629 
4 1.2933 1.5015 1.2661 1.5317 1.2349 1.5785 
5 1.362 1 1.4746 1.3383 1.4836 1.3065 1.5002 

N - * W  1.430 1.421 1.404 

t Finite-size estimates x,( N )  are obtained from x,( N )  = - l n ( L , $ / L ~ - , ) / l n (  N /  N - 1) and analogously from 
(OIEIE). 
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We observe that the x,, form sequences rising with N,  while the xFZ sequences are 
falling with N .  We thus expect that the mean x, = +( x,, + x F 2 )  shows a minimal depen- 
dence on N and consequently converges faster than the sequences x,, and x,?. 

We now want to estimate the limit N + a  which is a rather difficult problem with 
sequences as short as ours. Recall that the critical exponents, which are universal (e.g. 
Kadanoff 1976), should be independent of 77. Looking at the apparent 7 dependence 
of the estimated limits gives some idea on the errors involved. Let fn be a sequence 
with limit f and define the van den Broeck and Schwartz (1979) approximants [ n, L] 
as follows: 

[ n , - l ] = a  [U, OI=ftl 
([n, L +  13 -[n, L])-’ = - a ( [ n ,  L -  11 -[n, L])-I 

+ ([ n + 1, L] - [ n, L])-I + ([ n - 1, L ]  - [ n, L])-’ 

where a is a parameter (for our short sequences and because of (2.5), we can take 
a = 0). The approximants [n, L ]  are expected to converge faster towards f than the 
original sequence f n .  For each 77, the sequences x, were extrapolated by the van den 
Broeck and Schwartz (1979) algorithm and these estimated limits are also given in 
table 3. Our final estimate for x, is the mean of these three independent values: 

(2.7) X, = 1.42 * 0.02. 

Using (1.6) and v = 0.629 10.002 (Henkel 1984)f we obtain 

CY =0.11*0.01. 

This result compares well with those obtained by other methods. Marland (1981) 
obtained CY = 0.098 * 0.003 from a low-temperature series in the ( 2  + 1 ) ~  Ising model. 
In the 3~ Ising model, one has CY =0.12*0.02 from high-temperature series (Adler 
1983) and CY = 0.110*0.005 from the 44 field theory renormalisation group equation 
(Le Guillou and Zinn-Justin 1980). This again establishes the universality between 
the 3~ Ising model and its ( 2 +  1 ) ~  quantum analogue. Thus, comparing with the results 
from the literature, we can conclude that our approach (2.2) and (2.4) solves the 
problem of obtaining sensible finite-size estimates for CY. 

Finally, we briefly discuss hyperscaling. It was suggested by Freedman and Baker 
(1982) that hyperscaling should be violated in the 3~ Ising model. Barber et a1 (1985) 
have found no sign of hyperscaling violation. For a discussion of possible forms of 
hyperscaling violation, see Binder er a1 (1985). Using the value v = 0.629 f 0.002 
(Henkel 1984), we have the hyperscaling prediction x, = 3 - 1/ v = 1.410 * 0.005, in 
excellent agreement with (2.7). We conclude that hyperscaling is satisfied for our model. 

3. The amplitudes of the scaling fields 

In this section, we first present the numerical evidence for the universality of C,,, and 
C,,, (see (1.8) and (1.9)). Having done this, we discuss the consequences for the 
Privman- Fisher hypothesis. 

f Finite-size estimates for P can be derived from the beta function and no precise knowledge of the critical 
point is needed (Hamer 1983a). 
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3.1. Magnetisation density 

Consider the matrix elements of the magnetisation density with the expected scaling 
behaviour: 

(OlaI fT)  = N-"f,ao,,(r)) (3.1) 

(El+) = N-"-a,,,(r)) (3.2) 

with x, =0.515*0.009 (Henkel 1984). 
In table 4, we give the amplitudes? a,,,( r ) )  and uc,,( r ) )  for some values of r). The 

limit N+co is obtained from the van den Broeck and Schwartz (1979) algorithm. 
Then, we compute C,,, from 

C,,, = lim a,,(q) !F~ ao,Aq) . (3.3) 
N-CC ( ) - I  

From table 4 we see that C,,, is independent of r )  and therefore universal. 

3.2. Energy density 

For the matrix elements of E ,  which are non-diagonal, we expect 

(o lElE)= N - x e a o E E ( r ) )  (3.4) 

(+l4= a,(77)+ N-X%rr(r)). (3.5) 

with x, = 1.42(2) (see 0 2). For the diagonal matrix elements, however, we have 

This different scaling behaviour comes from the fact that the operator E as we wrote 
it in (1.4) also contains a contribution from the identity operator, which gives rise to 
the a,(?). In order to check that a,(q)  is really independent of the particular state, 
we show in figure 2 the three elements ( O ~ E ~ O ) ,  ( E I E I E )  and ( u l s / a ) .  We observe that 
for N + CO all three sequences converge towards the same limit. 

In order to obtain a,,,(r)) we have to subtract a , (q )  in (3.5). This leads to the 
reduced matrix element ( @ ) E  1 ~ ) ~  mentioned in the introduction. From a computational 
point of view, the direct subtraction of a,(r)) is not favourable. Rather, we consider 
a sequence f N  of the form fN = a + bN-". If w is known, estimates of b are obtained 

Table 4. Finite-size scaling amplitudes ao,r,, and aFo,,, 

2 +1.041 78 0.776 99 +1.009 36 0.772 44 +0.97449 0.772 63 
3 +1.062 84 0.853 34 +1.021 07 0.833 19 +0.978 81 0.811 87 
4 +1.072 20 0.882 80 +1.027 14 0.855 43 10.982 19 0.825 67 
5 +1.07649 0.898 75 +1.030 03 0.867 75 +0.98441 0.832 44 
N+cc +1.080 0.918 + 1.033 0.883 +0.989 0.839 

c,<,, +0.550 r0.855 +0.848 

i Since the critical point h, is not known exactly, this introduces an error S a / a  = Sh,/h,= 3 x 
is small compared to the error coming from the extrapolation using (2.5) and (2.6). 

which 
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I 
03 0 3  0 5  

1 IN 

Figure 2. Finite-size estimates for the matrix elements ( O ~ E ~ O ) ,  ( a / e l a )  and ( E ~ E ~ E ) .  The full 
curves illustrate the convergence towards a unique limit (t) = 1.0). 

from 

f N t l  -fN b =  
( N  + 1)- - N-" 

and no knowledge of a is needed. 
In table 5, we give aoEE( 7) and a,,,( 7) for some values of 7. The limit N + CO is 

obtained with the van den Broeck and Schwartz (1979) algorithm. We then compute 
/ \ - 1  

Table 5. Finite-size scaling amplitudes aODE and U,,, 

(3.7) 

2 -0.87594 - -0.80829 - -0.730 13 - 
3 -1.00435 -1.4407 -0.934 15 -1.4505 -0.861 5 5  -1.4781 
4 -1.041 63 -1.2693 -0.97644 -1.2441 -0.908 67 -1.2224 
5 -1.055 18 -1.1992 -0.99440 -1.1644 -0.931 99 -1.1308 
N + W  -1.063 -1.15 - 1.008 -1.11 -0.955 - 1.08 

c,,, 1.08 1.10 1.13 
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From table 5 ,  we conclude that C,,, is universal. Because of the reduction carried 
out (equation (3.6)), the accuracy of auEu(v)  is somewhat lower than for the other 
amplitudes. 

Comparing with table 4, we find that C,,, and C,,, are different. We have 
considered the possibility of an extremely slow convergence of the estimates of a,,,( 7). 
Our conclusion is that, although our estimates of C,,, might be slightly inaccurate, a 
possible shift due to a better determination of U,,,( 77) is still not large enough to allow 
for an equality of CUE, and C,,,. 

Our finding contrasts the situation in two dimensions (see, e.g., Cardy 1987), where 
C,,, and C,,, are operator product expansion coefficients and therefore automatically 
equal (von Gehlen er a1 1987). 

3.3. Privman- Fisher hypothesis 

We now study the relationship of the universality of C,,, and C,,, with the Privman- 
Fisher hypothesis. The Hamiltonian is written as 

H = H,+ t E(n)  
n 

(3.8) 

where H ,  is the critical point Hamiltonian, t = h - h, and E (  n )  is the local energy 
density. We stress that E is the only scaling field entering. 

As for the two-dimensional case (see Reinicke 1987), we use formal perturbation 
theory around H,. In carrying out this formal calculation we use the facts that 

(i)  the energy gaps at t = 0, b = 0 are universal (Henkel 1986), 
(i i)  C,,, and C,,, are universal, 
(i i i)  the hyperscaling relation d - x, = 1/ v is valid. 
It follows that the Privman-Fisher hypothesis (1.1) is supported not only for f = 0 

but for a domain of values of the scaling variable z = tN"" (in the limit t + 0, N + CO 

such that z is kept fixed). 
In exactly the same way one can treat a magnetic field b X,, a x ( n ) .  
For a different approach towards the scaling function using &-expansion techniques, 

see BrCzin (1982) and BrCzin and Zinn-Justin (1985). 

4. Magnetisation and susceptibility amplitudes 

In this and the following sections, we proceed to test the Privman-Fisher hypothesis 
directly at the critical point. The eventual verification provides additional evidence 
independent of the reasoning of § 3. 

We begin by comparing the magnetisation and susceptibility amplitudes. At h = 
h,( v), the free energy density is 

F ( ' ) =  N - d f ( v ) Y ( O ,  C 2 ( v ) b N A ' " )  (4.1) 
and we have included explicitly the normalisation constantf( 7). For the magnetisation 
and susceptibility densities at the critical point we have 

M = N-P'v f (v )Cz (q )Y ' (O ,  0 )  = N - P ' " a M ( v )  

/y= " ' v f ( ~ ) c : ( ~ ) " ' ( o , o ) =  N Y ' Y u X ( 7 ) )  (4.3) 

(4.2) 

where a prime denotes differentiation with respect to b. Consequently, we expect that 
the quantity u ~ / ( u X ( 7 7 ) f ( ~ ) )  is universal. 
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Table 6. Finite-size scaling susceptibility amplitude a,. 

N a,(l.O) a,(0.7) a, (0.5 ) 
~~ 

2 0.4527 0.6117 0.8155 
3 0.4983 0.6221 0.7680 
4 0.5183 0.6346 0.7660 
N+m 0.52 0.64 0.76 

a?.+/(a,f 1 2.24 2.21 2.21 

Finite-size magnetisations can be computed, using Yang's (1952) trick, from (Hamer 
1982) 

M = (Olvla). (4.4) 
The amplitude u M  = uocrr can be taken from table 4. In table 6, we show the amplitudes 
of the finite-size susceptibility (from the scaling relations and x, and x,, we have 
y /  Y = 1.97). We take the values for N = 4 to estimate the limit N + 00 of U%. 

We conclude from the data of table 6 that u a / ( u X ( 9 ) f ( 9 ) )  is indeed universal, in 
agreement with the Privman-Fisher (1984) hypothesis. 

5. Universality of the free energy 

We now consider the free energy density at the critical point. It is well known that 
the free energy contains a singular term (which gives rise to the singularity of the 
specific heat) and a regular term (proportional to the volume of the system). For 
periodic boundary conditions, we expect for the free energy density the scaling 
behaviour: 

F = F'"+ N - d u F  (5.1) 
where F'" comes from the regular part and is non-universal. 

In order to check the universality of uF ,  we again use (3.6). In table 7,  we give 
the estimates for uF.  We have to take into account the 9-dependent renormalisation 
of the Hamiltonian, as mentioned in the introduction. We therefore give in the last 
row of table 7 the renormalised amplitudes U,(V = l.O)f(v) and compare them with 
the U ,  obtained from (5.1). The values f o r f ( 9 )  are from table 1. 

We conclude that universality holds. Mon (1985) computed, for the 3~ (classical) 
Ising model, the amplitude U ,  for the sc and BCC lattice and obtained universality 
with respect to the lattice type. 

Table 7. Finite-size scaling amplitudes a F  of the singular part of the free energy. 

N ~ = 1 . 0  7 = 0 . 9  7 = 0 . 7  7 = 0.5 7 = 0.3 

3 1.5240 1.3018 0.8829 0.5072 0.1988 
4 1.3820 1.2485 0.9653 0.6618 0.3383 
5 1.2990 1.1808 0.9536 0.7033 0.43 1 1 
N + W  1.18 1 .o 0.91 0.72 0.54 

aF(l.Olf(t)) 1.18 1.08 0.89 0.68 0.52 
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6. Surface tension 

As a last topic, we study the surface tension at the critical point. Let E:’ be the 
ground-state energy of H (equation (1.2)) with antiperiodic boundary conditions in 
both directions and E?’ is the same quantity with periodic boundary conditions. Then 
the surface tension r is defined as 

= E r ’ -  E?’. (6.1) 

Our definition is different from the usual one (e.g. Widom 1972, Mori and Jasnow 
1985) since we have antiperiodic boundary conditions in two instead of one dimensions. 
We expect a finite-size scaling behaviour 

T =  To(7)N-I.  (6.2) 

In  table 8, we give the finite-size estimates for ~ ~ ( 7 ) .  Since the sequences are not 
always monotonic, the van den Broeck-Schwartz (1979) algorithm does not work for 
7 = 0.5 and 7 = 0.3. For 77 = 0.3, we used linear extrapolation instead, while for 7 = 0.5 
the given limit depends on our feeling how far the curve will go down, as determined 
in the 7 = 0.7 case. 

Table 8. Finite-size scaling amplitudes 7” of the surface tension 

N q = 1.0 q =0.9 q = 0.7 q = O S  q =0.3 

2 2.984 37 2.575 74 1.798 82 1.093 23 0.482 06 
3 2.547 46 2.306 84 1.800 95 1.265 87 0.672 53 
4 2.340 64 2.140 02 1.726 00 1.292 70 0.75426 
5 2.241 22 2.055 63 1.676 17 1.291 IO 0.781 07 
N + Xm 2.149 1.969 1.577 1.2 0.9 

To( 1 . O M  7) 2.149 1.975 1.616 1.240 0.939 

To check for universality, we note that because of (6.1), ~ ~ ( 7 )  still contains the 
renormalisation factor f (v ) .  In the last row of table 8, we show the renormalised 
amplitudes ~ ~ ( 1 . 0 )  f ( 7 )  and find that they agree with ~ ~ ( 7 ) .  So we can conclude that 
the finite-size scaling amplitude of the surface tension is universal. 

Our result is a counterpart to the work of Mon and Jasnow (1985) who studied, 
for the 3~ Ising model, the surface tension on lattices with antiperiodic boundary 
conditions in only one direction. 

The universality of the amplitude of the surface tension can also be looked at in 
a different way. From (6.1), T is the difference of the free energies computed with 
antiperiodic and periodic boundary conditions. The leading non-universal terms in N 
of E:’ and EhP’ cancel since they must not depend on the boundary conditions. 
Consequently, ro measures the difference of the amplitudes oF of the singular part of 
the two free energies. From § 5 we know that the amplitudes u F  of the singular part 
are universal for periodic boundary conditions. It follows that the amplitude with 
antiperiodic boundary conditions is also universal. 

Together with the verification for the correlation lengths (Henkel 1986), this is the 
first verification of the Privman- Fisher hypothesis for non-periodic boundary condi- 
tions in the three-dimensional lsing model. 
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7. Discussion 

We have studied, as a prototype of three-dimensional critical behaviour, a set of models 
lying in the 3~ Ising universality class. We expect that the general universality features 
found will also be valid for other models. 

We have concentrated our attention on the verification of the Privman-Fisher (1984) 
hypothesis, which dictates how non-universal behaviour can enter into the finite-size 
scaling function at all. 

By direct computation at  the critical point, we have verified the Privman-Fisher 
hypothesis for the following physical quantities: 

(1) the correlation length (Henkel 19861, 
(2) the magnetisation, 
(3) the susceptibility, 
(4) the (singular) free energy, 
(5)  the surface tension. 
The confirmation of (4) and (5) is further supported from the independent work 

of Mon (1985) and Mon and Jasnow (1985). The agreement of their results and ours 
supports the universality between the 3~ and the ( 2  + I ) D  Ising model. We also confirmed 
(1) and (4) for antiperiodic boundary conditions. 

Specific to the Hamiltonian approach used is the possibility to compute the eigenvec- 
tors (and not only eigenvalues, which correspond to ensemble averages) of the Hamil- 
tonian. This offers new ways of investigation. 

( a )  We have been able, for the first time, to obtain reliable finite-size estimates for 
the exponent x, (1.6): 

x, = 1.42 * 0.02 (7.1) 

which is in agreement with hyperscaling. This result does not agree with the observation 
of a hyperscaling violation in the 3~ k ing  model by Freedman and Baker (1982). 

( b )  The quantities C,,,, and C,,,, (equations (1.8) and  (1.9)) were shown to be 
universal. This result can be used to support the Privman-Fisher (1984) hypothesis 
not only at the critical point itself but for a domain of values of the scaling variables. 

Although this general feature looks similar to the situation in two dimensions, an 
important difference is that the numbers C,,, and C,,, appear not to be equal. It 
would be desirable to be able to use larger lattices than 5 x 5 (which already involves 
86 056 x 86 056 matrices) in order to clarify this point further. 
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Appendix. Numerical methods 

We describe the numerical techniques for the calculation of eigenvalues and eigenvec- 
tors of the 5 x 5 lattice. We consider both periodic and antiperiodic boundary condi- 
tions. 
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We utilise the invariance of H under rotations, reflections and translations. Rota- 
tions and reflections can be treated exactly the same way for both types of boundary 
conditions. For antiperiodic boundary conditions, however, the translation operators 
T, and T,. generating translations parallel to the x axis and y axis, repectively, do not 
commute. with H. Instead, we take in this case 

r = O  

It is a straightforward exercise to show that fx and f v  commute with H for antiperiodic 
boundary conditions. The states 14) are now cast into invariance classes I $ )  labelled 
by some representative $. The computation of the elements of H on the classes 14) 
is done in three steps. 

(i) Determination of the representatives and the number of elements of the invari- 
ance classes as follows: each configuration of the lattice is given by an integer between 
0 and 225 - 1 from its binary representation. The smallest configuration of an invariance 
class is chosen as its representative. Starting with the configuration 0, each configuration 
will be transformed by all symmetry transformations of the lattice. If one obtains a 
configuration in this way which is smaller than the one started from, the starting 
configuration must be a member of a class already considered. After at most 224 
configuration the procedure is finished, the only missing configuration being 225 - 1. 

(i i)  Computation of the diagonal elements. 
(i i i)  The off-diagonal elements are computed from 

where the class 1 ~ )  has m elements and 11)) has n elements and T stands for any one 
of the symmetry operators. 

This method is convenient since it allows an efficient computation of the elements 
of both ux and cy. AI1 that is needed to store is whether H flips a pair of parallel or 
antiparallel spins. 

For the 5 x 5 lattice, we have 86 056 invariance classes. For each charge sector one 
needs 27 Mbytes of storage for the matrix elements. 

The computations were carried out on a VAX 11/780. Steps 1 and 2 for both 
sectors together took 3.5 h CPU time (for the sector 0, the results can also be used for 
antiperiodic boundary conditions), step 3 took 11.5 h for each sector for periodic 
boundary conditions and 13 h for antiperiodic boundary conditions. 

The eigenvalues were computed using the Lanczos (1950) algorithm. For 25 iteration 
steps, which give the eigenvalues to about ten digits accuracy, we needed about 50 min 
CPU time. 

To obtain the eigenvectors, we first applied about 200 iterations of the B M K D  

algorithm (Berger et al 1977), which produces extremely stable results. The B M K D  

algorithm only gives the lowest eigenvalue and the corresponding eigenvector. To 
obtain the eigenvector / E )  of the second level in the sector 0, we used the resulting 
vector of the B M K D  scheme, which gave the eigenvalue with an accuracy better than 

as a starting vector for an additional run of six Lanczos iterations. 
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